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Abstract

In this paper, we investigate the application of probability density function (PDF) Monte Carlo methods to scalar
release from small sources in a turbulent flow spanning a large physical domain. This is a typical situation encountered
when modeling the dispersion of a gaseous substance in the atmosphere. Monte Carlo PDF methods have recently been
applied to atmospheric modeling responding to the need for predicting the higher statistics and the concentration PDF
generated by the continuous release of reactive and non-reactive substances. In this work we introduce some optimized
numerical techniques based on the paradigm that the main field of interest is the scalar field and not the fluid dynamic
field; the scalar are considered dynamically passive and the statistical characteristics of the turbulence velocity field are
assumed known. These techniques are a block-structured grid coupled with a particle splitting/erasing algorithm and a
localized time stepping. The proposed technique is different from others presented before since the particle splitting and
erasing is done in a more straightforward and consistent manner. This method has been applied to the study of scalar dis-
persion from localized line sources in a canopy generated boundary layer. The line source has been treated as a point
source in a two-dimensional space but the extension to three dimensions is straightforward. Our framework allows for
an evaluation of the effects induced by different levels of discretization in the velocity space of the involved micro-mixing
model, starting from the interaction by the exchange with the mean (IEM) toward the more physically consistent interac-
tion by exchange with the conditional mean (IECM). Therefore, aside from the algorithm description and a complete
numerical analysis of the code, a comparison between the IEM and IECM micro-mixing models has been investigated.
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Nomenclature

ai drift coefficient
bij diffusion coefficient
Bij bijbjk/2
BQ bias
bQ bias coefficient
C0 Kolmogorov constant for the Lagrangian velocity structure function
Cr Richardson–Obhukov constant
C/ micro-mixing constant
dr relative expansion
DQ discretization error
DQ deterministic error for Q

e turbulent kinetic energy
EQ computational error for Q

f/U velocity-composition joint PDF
f �u modelled fluctuating velocity PDF
f �/ modelled fluctuating composition PDF
f �/u modelled fluctuating velocity-composition joint PDF
fL Lagrangian PDF
gi gravitational acceleration vector
ic cell indexcK kernel function
l subgrid index
L length scale of most energetic eddies
Lx,Ly domain dimensions
m computational weight
n particle splitting factor
Nb number of subgrids
Nc total cell number
Np total number of particles

N ðicÞp number of particles in cell ic
Nui number of velocity cells in ui space
Q generic quantity
Q source emission factor
q1 probability for a particle to survive in SE algorithm
q2 probability for a particle to be erased in SE algorithm
Æpæ mean pressure
p 0 fluctuating pressure
rQ autocorrelation function of the process Q
RQ variance reduction factor for time averaging
SQ statistical error for Q

Sa ath scalar source/reaction term
t time variable
tðadimÞ
s adimensional calculation time for each time step

tðcÞQ Q signal correlation time

TL Lagrangian integral time scale
Tav averaging time
Ts time to reach stationarity
Tj local particle age
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T ðrÞj local residence time of particle j in every cell
Ui velocity
Vi sample space for velocity
ui fluctuating velocity
vi sample space for fluctuating velocity
U horizontal component of velocity
V vertical component of velocity
u horizontal component of fluctuating velocity
v vertical component of fluctuating velocity
u�i modelled fluctuating velocity
ÆUiæ mean velocity
xi ith spatial coordinate
x�i modelled position
yi0 initial particle position
Æyæ mean plume height
Z state vector of (xi,ui,/a) process
z sample space of Z
aQ statistical error slope

a(loc) local time coefficient
a(g) global time coefficient
d Dirac delta
dij Kronecker delta
Dt(g) global time step
Dt(loc) local particle time step
Dx,Dy cell dimensions
c velocity space transformation angle
C(a) molecular diffusion of a
e dissipation rate of turbulent kinetic energy
s turbulence time scale
sij Reynolds stress tensor
sL Lagrangian integral time scale
sm micro-mixing time scale
s/ dissipation time scale of concentration variance
Hi variable for drift coefficient definition
# standardized random variable
/a composition variable for a
/�a modelled random variable for a particle composition
/s(x,y) source composition
ua micro-mixing term for ath scalar species
wa sample space variable for ath scalar species
q density of fluid (air)
lx,ly scalar source coordinates
m kinematic viscosity
r locally averaged velocity variance
r0 scalar source size
ry mean plume depth
rr instantaneous plume spread
rui ui standard deviation
rur relative velocity fluctuation
r/ standard deviation of /
rn, rg standard deviation of transformed fluctuating velocities
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kij inverse of Reynolds stress tensor
n, g transformed fluctuating velocities
fj Wiener process
Æ Æ æ ensemble average
Æ Æ j Æ æ conditional ensemble averagee� cell average
� time average
[Æ]R relative error
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1. Introduction

The probability density function (PDF)/Monte Carlo method is a useful technique for chemical engineering
applications, and more in general in such disciplines where complex turbulent reactive flows are studied
[10,24,26]. This is the case, for example, of atmospheric dispersion modelling, where the behavior of many
reactive species in high Reynolds number turbulent flows has to be predicted. Nevertheless the application
to the atmospheric dispersion problem has been investigated only recently [2,14,17].

In general, the strength of the PDF approach lies in the ability to deal exactly with chemical reactions and
to reproduce all one-point statistical properties (i.e., one-point PDF) of the related concentration field. This
means that unclosed terms do not arise in the equation due to chemical reaction.

Here, we use a velocity-composition joint PDF approach in which the one-point statistics of both velocity
and concentration are considered. In the standard method [26,29] both the PDF of velocity and that of con-
centration are considered unknown. Here we modify this method by coupling the Thomson’s [40] approach
for the motion of fluid particles with a standard PDF technique for the concentration. In other words, we
are actually using an assumed shape for the velocity PDF while we are dealing with an unknown PDF of
the concentration. This kind of coupling has shown to be very powerful when the turbulence structure is suf-
ficiently predictable and main flow statistics are available from measurements [2–5].

In the Lagrangian PDF/Monte Carlo approach a large number of particles are moved in the computational
domain while solving a system of stochastic differential equations (SDEs) for position, velocity and concen-
tration carried by each particle. By some sort of grid-averaging procedure we obtain a discretized velocity-
composition joint PDF which represents the solution of the studied problem. To obtain meaningful solutions
an adequate number of particles must be used in the averaging.

In many practical cases the computational requirements of PDF technique can become very high due to the
dimensionality of the problem, the number of the chemical species involved and the need to adequately resolve
inhomogeneity in the flow and/or scalar fields. In such a case optimized computational techniques have to be
applied. Some studies have been devoted to this topic (see e.g. [18,15,22,31]).

The use of an assumed velocity PDF to move particles in a turbulent flow is a standard procedure in atmo-
spheric application (see e.g. [42]) and allows us to introduce a PDF/Monte Carlo algorithm specifically opti-
mized for the efficient computation of the properties of the scalars field. We note that the sources size of scalars
emitted in the atmosphere is usually very small compared to the size of the domain interested by the dispersion
thus imposing severe limitations to the applicability of non-optimized PDF methods.

In the present work we model the dispersion of a dynamically passive (i.e., not altering the flow field) non-
reacting scalar released from a small and localized (point) source in a two-dimensional space; this can be con-
sidered as a prototype of real world applications. In the region close to the source a high level of detail is
required while in zones away from the source coarser grid can be used. For this purpose a non-homogeneous
block-structured grid is employed and coupled with a particle splitting and erasing technique. These tech-
niques are useful for the reduction of computational errors in smaller cells and more generally for the optimi-
zation of the particle distribution/localization within the computational domain. We note that the use of an
unstructured grid would be also possible but an unstructured grid requires more expensive computational pro-
cedure to locate particles and does not allow an efficient treatment of the particle splitting and erasing. For
example in [18] a mass sorting algorithm was used in each cell before application of the particle splitting
and erasing. With a block-structured grid this is not needed, and the correct particles density is maintained
in a straightforward manner as we will see in detail in Section 3. Moreover, in the application related to atmo-
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spheric scalar dispersion there is no need of the extra flexibility allowed by unstructured grid that, on the con-
trary, can be fundamental when fluid dynamic calculations are involved.

A complete numerical analysis of the algorithm is performed following the work of [43] to accurately eval-
uate the effects of the block-structured grid and particle splitting and erasing technique. Besides the numerical
analysis a comparison is performed between discretized versions of two micro-mixing models: interaction by
exchange with the mean (IEM) and interaction by exchange with the conditional (over the velocity) mean
(IECM). We point out that from a discretized point of view the IEM could actually be viewed as a IECM
model with only one velocity class. A micro-mixing model represents a fundamental part of composition
PDF modeling because it simulates the dissipative effects of scalar fluctuation associated with turbulence
and molecular diffusivity. What will appear from the analysis is that even a small increase in the number of
velocity classes used (from one to three) gives a great improvement in the model results.

In the next section the PDF transport equation is introduced and the relationships with a system of SDEs
are discussed. Section 3 introduces the numerical algorithm. The numerical analysis is conducted in Section 4.

2. PDF approach

This section introduces the fundamental concepts of the PDF modelling applied to turbulent dispersion.

2.1. Basic equations

The exact transport equation for the one-point joint velocity-composition PDF, f/U ” f(t,xi,Vi,wa), of an
incompressible fluid is
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and can be obtained with standard methods from the Navier–Stokes equation and the scalar transport equation
(see [29]). In this equation xi represents the physical space variable, Ui the instantaneous velocity variable with
its sample space Vi, /a the composition variable with sample space wa. Æpæ is the mean pressure and p 0 is the
pressure fluctuation. Z stands for the vector state considered in the PDF, thus Z = (U,/) and ÆAjZ = zæ repre-
sents the ensemble average of the generic variable A conditioned on the realization of the vector state z = (V,w).

The left-hand side (LHS) of this equation is completely closed while the right-hand side (RHS) terms are
not closed because of the unavailable two-point information that defines conditioned mean Laplacians [20].
Consequently, to solve Eq. (1) these terms need to be modelled. The RHS terms are respectively the conditional

acceleration and conditional diffusion [29,10].
In general the solution of a modelled (closed) counterpart of Eq. (1) using standard PDE techniques (finite dif-

ference, finite volume) is computationally intractable since a great number of dimensions are involved (see e.g.
[10]). For example for our case of a statistically stationary two-dimensional flow with only one scalar a five-dimen-
sional grid would be required. The solution is more easily achieved using Monte Carlo techniques. Here we use
a Lagrangian Monte Carlo method to simulate by a stochastic integration the trajectories of a sample of ‘‘fluid
particles’’ and obtain the solution of the PDF transport equation by some sort of averaging operation [10,21].
Here, a fluid particle is intended to be a point moving with the fluid, with the local continuum fluid properties [29].

It is very important to underline the difference between true fluid particles and simulated fluid particles.
Simulated fluid particles represent the real fluid only in a statistical sense; for example if we follow the trajec-
tory of a modelled particle in the physical space we see that it is very different from that of a real fluid particle
although one point statistics of the velocity field could be identical.

The stochastic system that simulates the evolution of fluid particles trajectories is
dx�i ¼ ðu�i þ hUiiÞ dt; ð2Þ
du�i ¼ aiðx�; u�; tÞ dt þ bijðx�; u�; tÞ dfj; ð3Þ
d/�a ¼ uað/�a; x�; u�; tÞ dt þ Sað/�Þ dt; ð4Þ
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where x* is the modelled particle position vector, u* the modelled particle velocity fluctuation vector, ÆUiæ the
mean Eulerian velocity at particle location, /�a the modelled instantaneous particle concentration of ath chem-
ical species and Sa the scalar source/reaction term. dfj represents an incremental Wiener process, and asterisks
identify modelled variables. ai, bij and ua are, respectively, the drift, the diffusion and the micro-mixing terms.

System (2)–(4) corresponds to a Fokker–Planck (FP) equation [13] for the evolution of the model joint PDF
of velocity fluctuation and composition, f �/u, that is
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where Bij = bikbjk/2.
Comparing Eq. (5) with (1) shows that the drift coefficients ai, the diffusion coefficient bij and the micro-

mixing term ua are modelling terms for the unclosed conditional acceleration and diffusion terms of Eq.
(1). Mean velocity field is assumed to be known therefore the terms involving gi and oÆpæ/oxi in Eq. (1) are
implicitly included in the drift, ai.

To define bij we follow [23] (see also [27]) imposing the consistency with Kolmogorov similarity theory for
the Lagrangian structure function in the inertial subrange,
bij ¼ dijðC0eÞ1=2
; ð6Þ
where C0 is the universal constant of the Lagrangian structure function and e is the dissipation rate of the
mean turbulent kinetic energy. To define ai we use an approach largely adopted in the study of atmospheric
dispersion due to [40]; the drift coefficient is defined assuming that the one-point marginal PDF of the velocity
fluctuation, f �u ¼ f �ðui; xi; tÞ, has a known shape (here Gaussian), built using known information about turbu-
lent flow such as rui , Æuiujæ, that are obtained from measurements or theoretical assumptions (see Appendix A
for further details on ai evaluation). This definition of the coefficient guarantees the well-mixed (i.e. uniform)
distribution of modelled particles into physical domain for incompressible flows (see Eq. (19)).

Once we have defined ai and bij it remains to define a model for the micro-mixing term, ua. This is described
in more detail in the next section.
2.2. Models for the micro-mixing term

The micro-mixing model, ua, describes the effect of molecular processes in the dissipation of scalar fluctu-
ations (see e.g. [36]) and actually defines the evolution of the one-point marginal composition PDF, f/. Var-
ious micro-mixing models have been developed [7] and a set of constraints and desirable features have been
proposed [10,29] to define good models. Simplifying we can restate these as: (i) at high Reynolds number
the mean scalar fields must not be affected by micro-mixing; (ii) micro-mixing must dissipate the scalar fluc-
tuations (r/); (iii) the scalar field must be bounded (i.e., concentration must not be negative, / P 0); (iv) for
homogeneous scalar fields (i.e., statistically homogeneous scalar fields in homogeneous isotropic turbulence)
the scalar PDF should tend to a normal centered about the mean, Æ/æ. In particular, [6] argued that the PDF
should tend asymptotically to a Dirac delta function about the mean, d(/ � Æ/æ), where the ensemble mean,
Æ/æ converges to a positive value in bounded domains and to zero in unbounded domain.

One of the most used micro-mixing models is the IEM introduced by [41]. The IEM assumes a linear relax-
ation of the scalar toward its average value:
ua ¼ �
/�a � h/

�
ajx�i ¼ xii
sm

; ð7Þ
where sm is the micro-mixing timescale. This model reflects the concept that the ultimate action of mixing is to
homogenize the concentration field. Although simple, fast and widely employed in the PDF approach (for an
atmospheric application see [14]), this model has been shown to have two major disadvantages. The first is the
inability to respect property (iv), but this is not a necessary condition for satisfactory results in inhomogeneous
flows [39]. The second is the inability to fulfill constraint (i) due to the creation of spurious fluxes, which alter
the mean concentration field, as shown by [28] and further investigated by [37].
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A simple alternative to IEM capable of solving the problem of spurious fluxes is the interaction by exchange
with the conditional mean (IECM) model [9,28]:
ua ¼ �
/�a � h/

�
ajx�i ¼ xi; u�i ¼ vii

sm

: ð8Þ
In this case the instantaneous scalar field relaxes to a mean that is local in physical-velocity space. Simplifying
this means that particles interact with others that have a similar position and velocity. Physically this could be
seen as the scalar-mixing that occurs between fluid elements that belong to the same eddy [9].

As discussed in [18] this class of mixing model is more suitable for PDF calculation involving splitting and
erasing of particles then particle-interaction mixing models as, for example, modified Curl’s models (see e.g.
[26]).

In Section 4 we explore some differences in scalar field results obtained using IEM and IECM models since,
from a discrete point of view, the IEM is just an IECM with the lowest possible resolution in the velocity
space.

A problem using micro-mixing models comes with the definition of the micro-mixing timescale, sm. This
quantity, defines the scalar fluctuations dissipation rate and depends on scalar and turbulence characteristic
scales.

Under conditions of homogeneous turbulent mixing with no mean scalar gradient, sm = s/ and s/ � s = e/
e, where s/ is the dissipation time scale of concentration variance, s the turbulence time scale, e the mean tur-
bulent kinetic energy and e its dissipation rate.

Several DNS simulations and laboratory experiments provide estimates of the constant of proportionality
between s/ and s (see [2] for a short summary of related experiments).

In conditions of inhomogeneous turbulent mixing (e.g., when the scalar length scale is smaller than the tur-
bulent length scale), s/s/ is not constant, sm 6¼ s/ and in general this time scale should be different between
IEM and IECM model, though an exact formulation for sm is not available. However, the analysis presented
here should be only weakly dependent from the value of the micro-mixing time scale.

In our simulation of releases from a localized point source (see Section 3.1) in inhomogeneous non-isotropic
turbulence we use the phenomenological model for sm described in [2] for a neutral atmospheric boundary
layer. In this model sm is a function of the plume relative expansion (dr) and of the turbulent time scale
(s). See Appendix B for a brief description of the model.

3. Numerical method

We will introduce now some simple computational techniques to obtain physically consistent results main-
taining affordable computational costs.

The code has been developed mainly to study the dispersion of chemical reactive species in the atmospheric
environment when strong vertical mean velocity gradients and inhomogeneous turbulence conditions are pres-
ent. However, in the present work the code setup is for the study of a non-reactive tracer dispersion (i.e., a = 1)
in a two-dimensional model canopy layer.

From now on, asterisks will be omitted from modelled variables, so that xi � x�i , ui � u�i and /a � /�a. More-
over, we will consider x = x1 and y = x2 as the horizontal and vertical space coordinates, while U = U1 and
V = U2 will be the horizontal and vertical components of instantaneous velocity field (ÆUæ 6¼ 0, ÆVæ = 0).

3.1. Brief description of the experimental flow and scalar field

The experiment we refer to is described extensively in [19,32,33]. In this experiment one-point statistics of
velocity and passive scalar (heat) released from a line source have been measured in a wind tunnel equipped
with a model canopy layer composed of metallic rods. Some experimental features are presented in Table 1.
A full comparison of the model results with the measured scalar statistics up to the fourth order can be found
in [5] and shows good model performance.

Velocity field statistics shown in [32,33] are sampled and used to generate profiles from polynomial inter-
polation, as shown in Fig. 1. These profiles are used to define both the one-point marginal Gaussian velocity



Table 1
Some simulation details

Feature Value

Domain dimension (m) Lx = 1.0, Ly = 0.45
Number of grid blocks Nb = 4
Cell dimension ratio between adjacent grid blocks n = 4.0
Scalar source position (m) lx = 0.44, ly = 0.051
Scalar source sigma (m) r0 = 5.0 · 10�3

Grid block number Coordinates: xi = [min,max] (m)

Block 1 x = [0.3,1.3], y = [0,0.45]
Block 2 x = [0.35,0.9], y = [0,0.25]
Block 3 x = [0.4,0.65], y = [0,0.13]
Block 4 x = [0.42,0.55], y = [0.02,0.095]
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PDF, fu ¼ f �u , from which coefficient ai is obtained and both the dissipation e from which the coefficient bij is
computed (see Appendix A). The validity of the Gaussian approximation for dispersion inside a canopy has
been explored by several investigators (see e.g. [8,25]).

3.2. Monte Carlo code and block-structured grid

As discussed above, the best way to solve the joint velocity-composition PDF equation uses a Monte Carlo
integration of the differential equations shown in Eqs. (2)–(4). What we obtain is a set of Np trajectories in the
phase space, (xi,ui,/a), which are a statistical representation of the fluid movement and scalar dispersion pro-
cesses. This means that by adopting kernel averaging we estimate all the moments of the process modelled by
the stochastic system at a given position in space, xi. Here we use a particle-mesh method with cell centered
statistics. Therefore, the domain is covered with a mesh and the kernel estimates are related to each cell center
(see e.g. [10,29]).

3.2.1. Block-structured grid

Considering a typical computational domain for a short range prediction of atmospheric pollution the ratio
between the characteristic length scale of the source and the size of the domain can be easily less then 10�3.
The grid should be refined in order to provide details of the concentration field around the scalar source and as
a consequence, a large number of particles need to be simulated in order to have meaningful statistics at each
grid point. Because in PDF calculations the computational cost (W) is directly related to the number of par-
ticles per cell (N ðicÞp where ic = 1, . . . ,Nc is the cell index), the number of cells (Nc) and the total number of time
steps (Nt), i.e.,
W ’ N t

XN c

ic¼1

N ðicÞp ¼ N tN p; ð9Þ
it could be necessary to use some kind of locally-refined grid. As outlined in Section 1 unstructured grids can
be used but their use is computationally expensive and they are not required to have satisfactory performance
in scalar PDF calculation. In this work, computational costs have been lightened by adopting a block-struc-
tured grid approach.

The grid is composed of Nb blocks (subgrids) of different dimensions and resolutions. The smaller blocks
are nested within the bigger ones. The grid system is shown in Fig. 2. The characteristic dimension of cells in
the lth grid block is an integer fraction of that in the (l � 1)th grid block
DxðlÞDyðlÞ ¼ Dxðl�1ÞDyðl�1Þ

n
; ð10Þ
where n(=4) is the ratio between the cell size of neighbor blocks (see Table 1). The quantitative characteristic
of the grid structure can be deduced from Tables 1 and 2. All the grid resolutions used in the simulations are



Fig. 1. Velocity statistics input profiles obtained from [32,33] experiment, used to define coefficients ai and bij.
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reported in Table 2. Some calculation performances are given in Table 3 for different grid setups and model
configurations.

We point out that the block-structured grid allows for more complex grid configuration than that shown
here and is enough flexible to treat multiple source configurations and complex geometry (urban environ-
ment), thus being an optimal tool for atmospheric dispersion predictions.

Because of the globally non-uniform cell dimensions, a splitting/erasing (SE) algorithm has been introduced
for error-reduction purposes (see Fig. 3) as will be fully discussed below.



Fig. 2. Representation of the block-structured grid of dimension Lx · Ly = 1 · 0.45, discretized with Nc = 680 cells. The scalar source
location (0.44,0.051) is centered on block 4.

Table 2
Grid settings employed to evaluate discretization error

Setting Properties: Dxi = [min,max] (m), Nc

1 (s) Dx = [6.3 · 10�3,5.0 · 10�2], Dy = [5.6 · 10�3,4.5 · 10�2], 773
2 (h) Dx = [5.0 · 10�3,4.0 · 10�2], Dy = [4.7 · 10�3,3.75 · 10�2], 1152
3 (n) Dx = [4.2 · 10�3,3.33 · 10�2], Dy = [3.7 · 10�3,3.0 · 10�2], 1743
4 (}) Dx = [3.1 · 10�3,2.5 · 10�2], Dy = [2.2 · 10�3,1.8 · 10�2], 3928

Symbols refer to curves in Figs. 13 and 14.
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3.2.2. Computational algorithm

The computational algorithm is composed of the following main steps:

� Initialization of particle properties, (xi,ui,m,/);
� Main time loop, (T = T + Dt(g));

– Time loop on every particle, (T(loc) = T(loc) + Dt(loc)):

Update (xi,ui) from Eqs. (2) and (3);
Apply boundary conditions (see below);
Apply Splitting/Erasing (update m and Np);
Update / using Eq. (4);
Account for scalar source (/ = /s(x,y));

– Update cell-centered statistics, (e/ic ;
f/2

ic , etc) using Eq. (16);

� Calculate time averaged statistics, (/ic ; r/, etc.) using Eq. (30).

A set of Np stochastic particles of computational weight m are initially distributed with uniform density (see
Eq. (19)) in a physical domain of dimension Lx · Ly = 1. · 0.45 m2, discretized with a block-structured grid,
and then moved in phase-space (xi,ui,/) by numerically integrating the stochastic system (2)–(4) using an
Euler–Maruyama integration scheme, which has a first order convergence in weak sense (see e.g. [16]). At
the end of every local time step, Dt(loc), near-source particles are marked by a scalar concentration, /s(x,y)
defined around the source by a two-dimensional Gaussian function,



Table 3
Some computation performances by varying some simulation parameters

Mixing model Grid setting (Table 2) Nested SE N ðicÞp tðadimÞ
s

Increasing particle number, nested grid

IEM Setting 1 Yes Yes 14 1
IEM Setting 1 Yes Yes 44 3
IEM Setting 1 Yes Yes 88 6
IEM Setting 1 Yes Yes 147 10

Changing mixing model, nested grid (Section 4.2)

IEM Setting 2 Yes Yes 620 107
IECM (3 · 3) Setting 2 Yes Yes 620 120
IECM (9 · 9) Setting 2 Yes Yes 620 125
IECM (27 · 27) Setting 2 Yes Yes 620 135

Increasing cell resolution (IEM), nested grid

IEM Setting 1 Yes Yes 88 6
IEM Setting 2 Yes Yes 88 14
IEM Setting 3 Yes Yes 88 32
IEM Setting 4 Yes Yes 88 45

Increasing cell resolution (IECM 9 · 9), nested grid

IECM (9 · 9) Setting 1 Yes Yes 88 6.5
IECM (9 · 9) Setting 2 Yes Yes 88 15
IECM (9 · 9) Setting 3 Yes Yes 88 34
IECM (9 · 9) Setting 4 Yes Yes 88 50

Increasing cell resolution, regular grid

Dx · Dy, Nc

IEM 6.3 · 10�3 · 5.6 · 10�3, 12,720 No No 88 61
IEM 4.2 · 10�3 · 3.7 · 10�3, 28,798 No No 88 148
IEM 3.1 · 10�3 · 2.2 · 10�3, 65,688 No No 88 332

Time required for each global time step (tðadimÞ
s ) is in adimensional form. Grid settings for nested grid refer to Table 2.

Fig. 3. Sketch of the particle erasing procedure (left) with probability 3/4 when entering a coarser grid block. The surviving particle retains
its characteristics while the computational weight (m) is increased. Particle splitting (right) when entering a refined grid block, the new
particles have a computational weight 1/4 of the mother particle.
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QðDtðlocÞÞ
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where QðDtðlocÞÞ is the source strength, r0 = 5.0 · 10�3 m the source diameter and (lx = 0.44,ly = 0.051) m the
source position.

When particles arrive in boundary regions, the following conditions are imposed:

� top boundary, perfect reflection of particles velocity and position and absorption of the concentration;
� bottom boundary, perfect reflection of particles velocity and position while the concentration is not

changed;
� left and right boundaries, periodic condition for particles velocity and position and absorption of the

concentration.

At the end of every global time step cell-centered statistics, f/n
ic are updated; the new calculated values of e/ic

are used during the next global time step in the micro-mixing process.
With the SE algorithm all the cells in the domain have (statistically) the same number of particles N ðicÞp , dur-

ing the whole simulation. See Fig. 4 for a plot of the instantaneous and mean, N ðicÞp . Each particle has a weight,
m, which depends on the size of the cell within which it is located: smaller the cell smaller will be m. More
precisely m is a function of the grid ‘‘level’’, l, in which particle is located,
m ¼ 1=nl�1: ð12Þ

The SE algorithm is composed of two parts:

particle splitting: when a particle of weight m starting from a cell of grid l � 1 arrives in a cell of grid l it is
split into n ‘‘children’’ particles. These particles inherit all the features of the mother particle (u,v,x,y,/)
except the computational weight that becomes m/n. On successive time steps these n particles become inde-
pendent. In other terms we can consider splitting as a ‘‘ramification’’ of a trajectory of the stochastic pro-
cess into n independent trajectories starting from the same initial state.
Fig. 4. Instantaneous (N ðicÞp ) and time-averaged (N ðicÞp ) particle number, in each grid cell (ic = {1, . . . ,Nc}).
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particles erasing: when a particle of weight m starting from a cell of grid l arrives in a cell of grid l � 1 it has
a probability q1 = 1/n to proceed and a probability q2 = (n � 1)/n to be erased. The weight of the ‘‘surviv-
ing’’ particles becomes n times the original one: n · m.

The SE procedure used here is simpler compared to others used in the literature (see e.g. [18,38]) since it is
directly related to the ratio of adjacent cells size. More specifically, it does not need any control of the total
mass (computational weight) in each cell, any sorting algorithm to decide the particle to be split and any arti-
ficial threshold to decide what particle should be split and when. The method is straightforward to apply in
structured grid and it could be also applied to unstructured grid although with a lower efficiency.

Every (global) time step is composed of a series of time sub-steps; every particle is moved respecting a local
extended Courant criteria,
max
DtðlocÞðuþ hUiÞ

Dxic

;
DtðlocÞrv

Dyic

;
DtðlocÞe

e
;
DtðlocÞ

sm

� �
< 1; ð13Þ
where Dt(loc) is the position-dependent (local) time step of each particle; here rv is the standard deviation of the
vertical velocity. The local time step is thus defined as,
DtðlocÞ ¼ min aðlocÞ Dxic

ðuþ hUiÞ ; a
ðlocÞ Dyic

rv
; aðlocÞ e

e
; aðlocÞsm

� �
; ð14Þ
where 0 < a(loc) < 1. All the variables involved in this equation are evaluated at particle location (x,y). Using
position-dependent time steps allows one to avoid unnecessary calculations for particles located in greater cells
since these can be moved using a longer Dt(loc).

Particles are synchronized using a global time step, Dt(g),
DtðgÞ ¼ aðgÞ
Dxðl¼1Þ

maxðhuiÞ ; 0 < aðgÞ < 1: ð15Þ
A condition is imposed on Dt(loc) to ensure that T(loc) + Dt(loc)
6 Dt(g). We note that under stationary condi-

tions an alternative more rigorous method of local time stepping can be used [22]. This method is perfectly
consistent and very simple to implement when coupled to a posteriori treatment of particles distribution.

When T(loc) + Dt(loc) = Dt(g) cell-centered statistics are updated using the following averaging operation (Q
is a generic variable, such as /, . . . ,/n),
eQic ¼
PNp

j¼1
cKðxjÞQjmjT

ðrÞ
jPNp

j¼1
cKðxjÞmjT

ðrÞ
j

; ð16Þ
where T ðrÞj is the residence time of particle j in each cell during a global time step, cK is the kernel function
defined as
cKðxjÞ ¼
1 if xic < xj < xic þ Dxic ;

0 otherwise:



ð17Þ
This vector inequality means that the particle j is selected for the average in the physical cell ic if it is contained
inside the cell. This kind of kernel has the desirable properties to respect both local and global mean conser-
vation [10]. In our case we cannot find any significant improvement in the results using a more spatially accu-
rate kernel. The mean number of particles present in the cell ic during a Dt(g) is given by
N ðicÞp ¼
PNp

j¼1
cKðxjÞmjT

ðrÞ
j

mðicÞDtðgÞ
; ð18Þ
where mðicÞ represents the characteristic weight of particles in cell ic. Particle density within a cell is given by
qðicÞp ¼
PNp

j¼1
cKðxjÞmjT

ðrÞ
j

DxDy DtðgÞ
; ð19Þ
in incompressible flows qðicÞp is statistically homogeneous in space and time.
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In this setup, particle cell localization is a trivial and fast task. Cells are numbered sequentially using the
simple formula,
ic ¼ ðkx � 1ÞN ðlÞy þ ky þ N ð1:l�1Þ
c ; ð20Þ
where N ðlÞy represents the number of cells in y direction at grid block l, N ð1:l�1Þ
c is the total number of cells in-

cluded in subgrid 1 to l � 1, kx and ky are the local indexes of the cell in its block, respectively, in the x and y

directions.
When velocity conditioned averages are required (i.e., in IECM micro-mixing), computational cells extend

also in velocity space and cell-centered statistics are calculated using
eQivc ¼
PNp

j¼1
cKðxj; ujÞQjmjT

ðrÞ
jPNp

j¼1
cKðxj; ujÞmjT

ðrÞ
j

; ð21Þ
where T ðrÞj now refers to cells in (xi,ui)-space, ivc is the index of space-velocity cells, and the kernel estimator is,
cKðxj; ujÞ ¼ 1 if xivc < xj < xivc þ Dxivc and uivc < uj < uivc þ Duivc ;cKðxj; ujÞ ¼ 0 otherwise:
ð22Þ
This vector inequality means that the particle j contributes to the average in (21) if it is contained inside the cell
of index ivc in the four-dimensional physical-velocity space. Velocity space discretization is achieved by creat-
ing cells of equal-probability in the ui domain. For example, if we assume a Gaussian shape for the PDF of the
horizontal velocity fluctuation (see Section 2.1), u, given by
GðuÞ ¼ 1

ru

ffiffiffiffiffiffi
2p
p exp½�u2=2r2

u�; ð23Þ
to discretize the u-space we require that
Z ukþ1

uk

GðwÞ dw �
Z þ1

�1
GðwÞ dw=N vc for each k; ð24Þ
where k = {1, . . . ,Nvc} and Nvc represent the node index and the number of cells of the velocity grid.
When velocity components are correlated (i.e., Æuvæ 6¼ 0) the reference system is modified to simplify the cell

creation (see Appendix C for more details).

4. Numerical testing

Solving a physical problem by numerical methods is always a delicate task, and the main efforts in devel-
oping a numerical code are finalized on obtaining an accurate solution while minimizing the computational
costs.

4.1. Computational errors

Following [43], numerical error (EQ, where Q represents a generic computed quantity, i.e. a scalar statistic)
can be defined as the sum of two components: statistical error (SQ), and deterministic error (DQ), so that it
reduces to
EQ ¼ SQ þDQ: ð25Þ

The two errors have different origins and behaviors.

4.1.1. Statistical error

The statistical error (SQ) is due to the fact that the number of particles representing the joint PDF in each
cell, N ðicÞp is finite. If we consider a generic variable Q, for which we calculate an instantaneous cell-centered
statistic, using Eq. (16), SQ is defined as,
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SQ ¼ eQic � heQici: ð26Þ

The second term in RHS represents the ensemble average of the instantaneous cell-centered mean.

In the left plot of Fig. 5 we show the evolution of the instantaneous cell-centered mean concentration, e/ic ,
for different measurement points. For simulation times within the stationary regime (i.e., T > Ts � 0.5 s), the
fluctuations around he/ici are caused by the statistical error.

Fig. 6 shows the root-mean-squared (rms) statistical error of e/ic and fr/ ¼ ðf/2 � e/2Þ1=2 as a function of the
cell particle number N ðicÞp for IEM and IECM 9 · 9 mixing models, both with and without SE algorithm. From
now on Nu · Nv will be used to point out the number of velocity classes used by the IECM model (i.e., 9 · 9
means that the velocity space is discretized with Nui ¼ 9 cells in both u and v directions for a total of 81 cells).
The expected relation,
SQ ¼
aQffiffiffiffiffiffiffiffiffi
N ðicÞp

q #; ð27Þ
is confirmed: the statistical error is a function of the square root of the cell particle number. Here aQ is the

slope of the fit lines and # is a standardized random variable (we can see also that SQ ¼ rQ=
ffiffiffiffiffiffiffiffiffi
N ðicÞp

q
#, [43]).

The number of N ðicÞp for the NSE (no splitting/erasing) simulation is different at different measurement points
since they are located in different grid blocks.

For different measurement points, given the same N ðicÞp , the statistical error can vary significantly.
An alternative and more relevant representation of the instantaneous error, within a stationary regime, is

shown in right plot of Fig. 5. This is the relative error and is given by the concentration fluctuation, ðe/ ic � /icÞ
normalized by the time-averaged concentration (see Eq. (29)), /ic ,
½/ic �R ¼
ðe/ic � /icÞ

/ic

: ð28Þ
Differences between temporal series are due to different turbulence and scalar mixing characteristics in the
flow. The statistical error of ½/ic �R and [r/]R approximately collapse on the same curve in Fig. 7, for different
measurement points. This is more evident when the SE algorithm is used since the statistical error tends to be
only a function of the N ðicÞp and irrespective of the location. However, the collapse is not perfect showing that
there is still a weak dependence on the location.
. Left: time evolution of the instantaneous icth cell-centered mean concentration, e/ic . Different curves represent different
rement points: continuous line (0.46,0.047), dashed line (0.6,0.047), dash-dotted line (0.8,0.047) and dotted line (1.136,0.047). T is
ulation time (s). Right: time evolution of the instantaneous relative error of ~/ic on /ic , in two different locations: continuous line
.047), dotted line (1.136,0.047). T is the simulation time (s). N ðicÞp ¼ 88 and grid corresponds to setting 1.



Fig. 6. Root-mean-squared (rms) statistical error of the instantaneous cell-centered mean concentration (e/ic , A1 to B2) and scalar
variance (er/, C1 to D2). Top plots (A1, B1, C1 and D1) refer to simulation with SE algorithm while bottom plots (A2, B2, C2 and D2)
refer to simulations without SE algorithm (NSE). Left column plots refer to IEM micro-mixing model, while right column plots refer to
IECM (9 · 9). Measurement points are (0.46,0.047: s), (0.6,0.047: h), (0.8,0.047: n) and (1.136,0.047: }). Grid corresponds to setting 1.
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In Fig. 6 we can evaluate the statistical error reduction induced by the splitting/erasing algorithm, especially
in regions with smaller cells (symbols s and h) where, without SE, N ðicÞp is very small if compared with larger
cell regions. Therefore, maintaining constant the total number of particles, Np, the SE algorithm results in a
significant reduction of the statistical error in the near source region. Moreover, using the SE procedure the
statistical error is more uniform in the entire domain.

For statistically stationary time series, statistical error can be further reduced via time-averaging,
Qic ¼ eQic ¼
1

T av

Z T sþT av

T s

eQicðsÞ ds; ð29Þ
calculated using
Qic ¼
PN t

k¼1
eQðkÞic

N t

; ð30Þ
where (k) refers to the kth global time step.



Fig. 7. As in Fig. 6 but for the statistical error of the relative errors ½e/�R and [r/]. Measurement points are (0.46,0.047: s), (0.6,0.047: h),
(0.8,0.047: n) and (1.136,0.047: }). Grid corresponds to setting 1.
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In Fig. 8 we show a comparison between the instantaneous cell-centered mean concentration e/ ic and the
time-averaged concentration /ic for increasing averaging time Tav (once the process has reached its stationary
state). It is easy to see that the variance of the time-averaged variables decreases with increasing Tav, thus
removing the presence of statistical errors.

A measure of this variance reduction obtained from a series of 30 independent IEM simulations is shown in
Fig. 9 where the variance reduction factor of the time averaged concentration is plotted against the averaging
time. For generic quantity Q the variance reduction factor is defined [30,43] as
RQ ¼
varðQicÞ
varðeQicÞ

" #1=2

; ð31Þ
where ‘‘var’’ stands for the variance computed using the 30 independent simulations just mentioned. Fig. 9
shows that to reduce the statistical error by time averaging we need to average for a time Tav that is longer
than a factor of the time scale tðcÞQ . tðcÞQ represents the correlation time of the time series and consequently,



Fig. 8. Instantaneous cell-centered mean concentration e/ic (top) and time averaged mean concentration /ic (bottom) as a function of the
simulated time T (s) and the averaging-time Tav (s). N ðicÞp ¼ 88 and the grid corresponds to setting 1.
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the efficiency in reducing the statistical error using time-averaging technique. In particular, tðcÞ/ shown in Fig. 9
can be found by fitting the curve of RQ (for Q ” /) in the region of steeper slope. Alternatively tðcÞ/ can always

be computed as the integral of the autocorrelation function, r/ðsÞ � he/ðtÞe/ðt þ sÞi of the series,
tðcÞ/ ¼
Z 1

0

r/ðsÞ ds: ð32Þ
As we see in Fig. 9, the value of tðcÞ/ and tðcÞr/
(slope of linear fits) is not homogeneous in the whole domain: it

depends on local characteristics of turbulence and micro-mixing process. In general where signal fluctuations
have lower frequencies (greater tðcÞQ ), the averaging time requested to reduce significantly the statistical error
will be longer.

Averaging time in the order of 100 times tðcÞQ can reduce the statistical error by two orders of magnitude.
Although Fig. 9 refers to IEM simulation with SE, the same consideration extends to IECM results.

4.1.2. Deterministic errors

Statistical error plays a fundamental role in error analysis but another major contribution to the inaccuracy
of the numerical solution comes from deterministic errors, DQ. DQ originates from the use of discrete math-
ematics in solving differential equations. In particular, we can separate deterministic errors in two main parts:
bias (BQ) and discretization error (DQ).

Bias, BQ, results from using a finite number of particles. We can define the bias as the difference between the
time-averaged solution with N ðicÞp particles, and the solution obtained for N ðicÞp !1, maintaining constants all
other simulation features (Nc,Dt),
B ðN ðicÞÞ ¼ QðN ðicÞÞ � Qð1Þ : ð33Þ
Q p p ic ic



Fig. 9. Reduction factor of the scalar statistical error of e/ic (upper plots, A1, B1, C1, D1) and r/ (lower plots, A2, B2, C2, D2), plotted as
a function of the averaging-time Tav normalized on the correlation time tðcÞQ , for IEM simulations. Different symbols refer to different
locations in the computational domain (0.46,0.047: s), (0.6,0.047: h), (0.8,0.047: n) and (1.136,0.047: }). N ðicÞp ¼ 88 and the grid
corresponds to setting 1. The dashed line represents 2/Tav slope.
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In general, since we do not know the value of Qð1Þic , we need to adopt another procedure to evaluate the bias.
In Fig. 10 we show the value of /ic for different values of N ðicÞp . Increasing N ðicÞp results in a decrease of BQ fol-
lowing the relation
BQ ¼
bQ

N ðicÞp

; ð34Þ
where the bias coefficient bQ is an empirical constant which can be deduced from the slopes of the linear fits in
Fig. 10. Bias plots obtained from Eq. (34) are shown in Fig. 10.

Values of b/ are shown in Fig. 10. The first aspect we notice from these plots is that IECM solutions are
more sensitive to the cell particle number N ðicÞp than IEM solutions. This is an expected behavior because in the
IECM model particles need to be located also in velocity space; the computational grid is four-dimensional
(x,y,u,v). For this reason, a velocity-conditioned mixing model requires a greater number of total particles



Fig. 10. Time-averaged concentration /ic as a function of the cell particle number, N ðicÞp . IEM (s) and IECM 9 · 9 (}) results are shown
both with SE algorithm (A1, B1, C1 and D1) and without SE algorithm (NSE, A2, B2, C2 and D2). Bias coefficient, b/, is included at the
top of plots. Measurement points are (0.46,0.047: A), (0.6,0.047: B), (0.8,0.047: C) and (1.136,0.047: D). Grid corresponds to setting 1.
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(Np) to reach the same level of bias of a velocity-non-conditioned model. We point out that looking at the bias
from the NSE simulations, care should be taken in considering that we do not have the same number of par-
ticle in different cells; i.e. the bias coefficient should be divided with a different number of particles depending
on the cell size. Comparing IECM simulation with SE and without SE we can see that there is a reduction of
the bias in the smaller cell (about six times smaller) while the reduction is less evident in the larger cell (about
two times smaller).

Fig. 11 shows the time-averaged scalar standard deviation r/ ¼ ð/2 � /2Þ1=2 as a function of 1=N ðicÞp . We
can see that the bias of the variance is less dependent on the micro-mixing model used. Moreover, comparing
IECM simulation with SE and without SE we can see that there is a very strong reduction of the bias in the
smaller cell (about twenty times smaller) and in the larger cell (about five times smaller).

The discretization error, DQ, comes from the discretization of computational (spatial and temporal) space.
Although this code uses spatial discretization only for the computation of scalar field statistics, the use of a
cell-centered algorithm on broad cells can influence the accuracy of the micro-mixing step, because the instan-
taneous scalar field relaxes to a mean concentration which is not sufficiently local in physical space. To better



Fig. 11. As in Fig. 10, but for the scalar fluctuation, r/. IEM (s) and IECM 9 · 9 (}) results are shown with and without SE algorithm.
Bias coefficient, br/

, is included at the top of plots. Measurement points are (0.46,0.047: A), (0.6,0.047: B), (0.8,0.047: C) and (1.136,0.047:
D). Grid corresponds to setting 1.
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isolate this effect, a constant value (0.1 s) for sm has been imposed throughout the domain. Fixing N ðicÞp and
varying cell dimensions can help to get a raw, but significant estimation of DQ for IEM and IECM (9 · 9),
DQ ¼ dQðDxDyÞ1=2
=ry ; ð35Þ
where dQ is the slope of the line fits in Fig. 12. Fig. 12 shows /ic and r/ obtained from IEM and IECM 9 · 9
simulations for various grid setups. Grid setups are summarized in Table 2. Local grid dimensions are normal-
ized on local plume mean depth ry, defined as
r2
y ¼

Z 1

0

ðy � yÞ2/ðyÞ dy
�Z 1

0

/ðyÞ dy; ð36Þ
where y is the mean plume height,
y ¼
Z 1

0

y/ðyÞ dy
�Z 1

0

/ðyÞ dy: ð37Þ



Fig. 12. Time-averaged concentration (/ic ) and standard deviation (r/) plotted against local cell dimension ((DxDy)1/2) normalized on
local mean plume depth (ry), for both IEM (s) and IECM 9 · 9 (}) mixing models. Spatial discretization coefficients d/ and dr/

are
included at the top of plots. Measurement points are (0.46,0.047: A), (0.6,0.047: B), (0.8,0.047: C) and (1.136,0.047: D). N ðicÞp ¼ 88.
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From Eq. (35) we can calculate a discretization error that remains in all the cases under 5%.
A better qualitative picture of the effects of grid variation is shown in Figs. 13 and 14. Here some vertical

profiles of /ic and r/ are traced at different positions in the x direction, for different grid setups (see Table 2),
both for IEM and IECM 9 · 9 models. What we can observe is the major sensitivity of IECM on DxDy vari-
ations, in particular where cells are larger (i.e., plot D).

Also time discretization plays a relevant role in discretization error. In this work two discretization times
have been introduced: the global time step (Dt(g)) and the local time step (Dt(loc)). Dt(loc) is the effective inte-
gration time of the differential equations (2)–(4). A major stability factor is given by the ratio between these
two time scales. Fig. 15 shows that, within our range of variability of the parameters a(g) and a(loc), IECM 9 · 9
simulations give better results by increasing the ratio a(g)/a(loc) . This is due to the fact that, given Dt(g), a reduc-
tion in D(loc) increases the probability that all velocity classes are visited by the particles, especially when low
values of N ðivcÞ

p are used.



Fig. 13. Mean concentration vertical profiles, for IEM (continuous line) and IECM 9 · 9 (dashed line) micro-mixing models, obtained
varying the local cells dimension. Measurement points are (0.46: a), (0.6: b), (0.8: c) and (1.136: d). Refer to Table 2 for grid settings
details.
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4.2. Micro-mixing model effects/choice

The choice of the micro-mixing model to use is not an easy task. In this section we compare the mean scalar
fields obtained from using IEM and IECM models, maintaining fixed all the other simulation features. Firstly,
we compare the mean concentration fields obtained using IEM and IECM (with different levels of discretiza-
tion of the velocity) to the mean concentration obtained by a marked particle (MP), used as a reference. Sec-
ondly, we compare the concentration fluctuations field (r/), between IEM and IECM using the IECM with
27 · 27 velocity classes as a reference.

We now briefly discuss the marked particle approach explaining why we are using this mean field as a ref-
erence. In the marked particle approach we do not use a micro-mixing model to compute the mean concen-
tration field, Æ/(xi, t)æ; this is obtained by releasing (instantaneously or continuously) a set of independent
tracer particles from the source point and using the identity [29],
h/ðxi; tÞi ¼ fLðxi; tjyi0ÞQ; ð38Þ



Fig. 14. As in Fig. 13 but for the scalar standard deviation, r/. Refer to Table 2 for grid settings details. N ðicÞp ¼ 88.
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where fL(xi, tjyi0) is the Lagrangian PDF for a particle starting at time t0 from position yi0 to arrive at time t at
position xi; in this case yi0 represents the scalar source location. Q is the instantaneous mass of tracer released
from the source.

The solution of Eqs. (2) and (3) for a set of independent particles starting from point yi0 at time t0 corre-
sponds to the solution of the FP equation for the Lagrangian joint PDF of velocity fluctuations and position,
fL = fL(vi,xi, tjvi0,yi0),
ofL

ot
þ oðvi þ hU iÞifL

oxi
¼ � oaifL

ovi
þ o

2BijfL

oviovj
� ouafL

owa

: ð39Þ
fL(xi, tjyi0) is related to fL by the relationship
fLðxi; tjyi0Þ ¼
Z Z

fLðvi; xi; tjvi0; yi0Þ dui dvi0: ð40Þ
This approach allows one to obtain a mean scalar field directly from the dynamic equations, without using
micro-mixing models, and to some extent we can say that the marked particle approach gives the exact esti-
mation of Æ/(xi, t)æ for an assigned velocity PDF. Although very precise, this approach cannot provide mo-
ments of the scalar field higher than the first order and cannot handle directly a reactive scalar. This is the



Fig. 15. Time-averaged concentration at locations (0.46,0.047: a) and (1.136,0.047: b) plotted against the ratio a(g)/a(loc). Symbols are
IEM (s), IECM 3 · 3 (h) and IECM 9 · 9 (n). The number of particles per cell in each simulation is N ðicÞp ¼ 88.
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reason for which we need the PDF micro-mixing modelling. For the same reason we will use the highly re-
solved (in velocity space) IECM as a reference during the comparison of the scalar fluctuation.

Figs. 16–18 show the comparison between the scalar field obtained by PDF modelling against that obtained
by marked particle modelling. Fig. 16 is a scatter plot of /ic for IEM model with Np = 106 and IECM with
3 · 3 velocity classes and 106 particles against the marked particle simulation. The plot on the right is a zoom
Fig. 16. Scatter plot of the time-averaged concentration (/ic ) for IEM (+) and IECM 3 · 3 (h) against marked particle model (MP), using
Np = 106 total particles. Lines are: continuous 10%, dashed 50% and dotted 100% differences. Right figure is a zoom of the left figure. Grid
corresponds to setting 2.



Fig. 17. Scatter plot of the time-averaged concentrations (/ic ) for IECM 9 · 9 (}) and 27 · 27 (·) against marked particle model (MP),
using Np = 106 total particles. Lines are: continuous 10%, dashed 50% and dotted 100% differences. Right figure is a zoom of the left
figure. Grid corresponds to setting 2.

Fig. 18. Cumulative distribution function (CDF) of mean concentration relative error, ½/ic �
ðMPÞ
R for IEM (+), IECM with 3 · 3, 9 · 9 and

27 · 27 velocity classes (h, } and ·) against marked particle model.
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of the plot on left. Here we can see the distortion created by the IEM model since it does not respect the con-
straint (i) explained in Section 2.2. The improvement obtained using only three velocity classes is surprising
and it will be better quantified. In general these scatter plots show that the differences between the mean ref-
erence field and that obtained by the IEM model increase with the distance from the source since the micro-
mixing model acts for a longer time.

Fig. 17 shows the same comparison but for the IECM with 9 · 9 and 27 · 27 velocity classes (Np = 106). It
is easy to see the great improvement obtained with respect to the results of IEM and IECM 3 · 3 by increasing
the number of velocity classes (an IEM can be seen as an IECM with only one velocity class). There are only
minor differences between IECM 9 · 9 and 27 · 27 as we can see from Fig. 17.

A more quantitative comparison is given in Fig. 18; for each simulation is shown the cumulative density
function (CDF) of relative differences,
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The plot tells us that with the IEM model we have almost 100% of probability to obtain a result with relative
difference under 80% and only 40% of probability to have a relative error below 5%. For IECM with 27 · 27
velocity classes the relative errors are with almost 100% probability under 20%. What is surprising is the great
improvement of IECM 3 · 3 with respect to IEM; we have almost 80% of probability to have a relative error
below 5%. The improvement obtained from 27 · 27 in comparison with 9 · 9 is not significant, if we consider
the increase in computational requirements by increasing the number of velocity classes.

Figs. 19–21 show the comparison between the fluctuations of the scalar field obtained by IEM and IECM
modelling with 3 · 3 and 9 · 9 velocity classes against IECM modelling with 27 · 27 velocity classes. IEM
. Scatter plot of the time-averaged scalar variance (r/) for IEM (+) and IECM 3 · 3 (h) against IECM 27 · 27 simulation, using
06 total particles. Lines are: continuous 10%, dashed 50% and dotted 100% differences. Right figure is a zoom of the left figure. Grid
onds to setting 2.

. Scatter plot of the time-averaged scalar variance (r/) for IECM 9 · 9 (}) against IECM 27 · 27 simulation, using Np = 106 total
es. Lines are: continuous 10%, dashed 50% and dotted 100% differences. Right figure is a zoom of the left figure. Grid corresponds
ing 2.



Fig. 21. Cumulative distribution function (CDF) of scalar variance relative error, ½r/�ð27	27Þ
R for IEM (+), IECM with 3 · 3 and 9 · 9

velocity classes (h and }) against IECM with 27 · 27 velocity classes.
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brings poor results. The IEM 3 · 3 give again a good improvement especially for higher values of r/. IECM
with 9 · 9 classes is in good accordance with reference simulation results, as we can also see in Fig. 21, where
CDFs of relative difference
½r/�ð27	27Þ
R ¼ absðr/ � rð27	27Þ

/ Þ=rð27	27Þ
/ ð42Þ
are presented. This comparison is somewhat less rigorous than that with the marked particle model since there
is a dependence from the micro-mixing time scale, i.e. the time scale could be modified to give a better agree-
ment for the IEM model. However, the improvement would be only apparent since actually the intensity of
concentration fluctuations (the ratio of the rms and the mean) would be different.

5. Conclusion

A probability density function (PDF) code for the study of atmospheric scalar dispersion from small
sources has been developed. This is based on a Monte Carlo algorithm in which model fluid particles are
moved in a block-structured grid using [40] well-mixed criteria and adopting a splitting/erasing procedure that
preserves a constant number of particles in every cell. This algorithm allows to refine the computational grid in
near-source regions thus accounting for sharp scalar gradients and optimizing computational resources.

The numerical analysis of this PDF/Monte Carlo code emphasizes the benefits introduced by the algorithm,
in particular, underlining the effective reduction of the numerical errors (statistical and bias) introduced by the
splitting/erasing procedure.

A fundamental part in every PDF simulations of scalar dispersion is the micro-mixing model which defines
the rate of decay of scalar fluctuations. A comparison between interaction by exchange with the mean (IEM)
and interaction by exchange with the conditional mean (IECM) micro-mixing models has been achieved,
showing the superiority of the IECM model with respect to IEM when the mean concentration field calculated
from a marked particle simulation is used as a reference. In particular, the IECM model introduces effective
improvements in evaluating statistics of the scalar field even using only 3 · 3 velocity classes. The IECM model
has shown a major sensitivity on simulation parameters (i.e., number of particles per cell, time step size, cell
dimension) by showing a bigger level of bias if compared to IEM model results; this is primarily due to the
need of also distributing particles in velocity space.

Although numerical analysis is presented for a two-dimensional situation, extension to three-dimensions is
straightforward.
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Appendix A. Drift coefficient

The drift coefficient, ai, introduced in Eq. (3) is obtained following Thomson [40] for the well-mixed con-
dition to be satisfied it is sufficient that the modelled PDF for the Eulerian velocity fluctuation,
f �u ¼ f �ðui; xi; tÞ, satisfies Eq. (5). If we assume a Gaussian shape for f �u ,
f �u ¼ ð2pÞ�3=2ðdet sijÞ�1=2 exp � 1

2
uis
�1
ij uj

� 	
; ðA:1Þ
satisfying the Fokker–Planck equation (5), then the well mixed condition is
aif �u ¼
o

oxk

1

2
bijbjkf �u

� �
þHiðu; x; tÞ; ðA:2Þ
and following Sawford [35]
oHi

oui
¼ � of �u

ot
� o

oxi
½ðui þ hUiiÞf �u �; ðA:3Þ
with H! 0 as |u|!1. Given Æbijbjkæ = dijC0e, the Thomson’s solution for the drift coefficient is
ai ¼ �
C0e
2

� �
kikuk þ

Hi

f �u
; ðA:4Þ
where the first term on RHS is the fading memory term. The second is the drift correction term and is given by
[35]
Hi

f �u
¼ 1

2

osij

oxj
þ kjm

2

osim

ot

� �� 	
uj þ

kjm

2
Ukh i osim

oxk

� �� 	
uj þ

kkm

2

osim

oxj

� 	
ujuk; ðA:5Þ
where kij ¼ s�1
ij , and sij = Æ uiujæ.

In two-dimensional cases (directions x1 and x2), assuming horizontal homogeneity (o/ox1 = 0), stationarity
and that U2 = 0 the two components of ai become
a1 ¼ �
C0e
2

k11u1 þ k12u2ð Þ þ 1

2

os12

ox2

þ k11

2

os11

ox2

� �
u2u1 þ
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2
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ox2

� �
u2u1 þ

k22

2

os12

ox2

� �
u2

2 þ
k12

2
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ox2

� �
u2

2;

ðA:6Þ

and
a2 ¼ �
C0e
2

k12u1 þ k22u2ð Þ þ 1
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2
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Here
k11 ¼ ðs11 � s2
12=s22Þ�1

; ðA:8Þ
k22 ¼ ðs22 � s2

12=s11Þ�1
; ðA:9Þ

k12 ¼ ðs12 � s11s22=s12Þ�1
: ðA:10Þ
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Appendix B. Micro-mixing time calculation

We define the micro-mixing time scale as sm = lsr = lrr/rur, where l is an empirical constant, rr the instan-
taneous plume spread and rur is the standard deviation of the relative velocity fluctuations, rur ¼ hu2

r i
1=2. ur

represents the difference between a turbulent velocity component and the corresponding velocity component
of the instantaneous center of mass of a cluster of particles (see e.g. [12]).

rur is modelled using the following formulation [11], strictly correct only in the inertial subrange,
r2
ur ¼ r2 rr

L


 �2=3

; ðB:1Þ
where r2 define a locally averaged velocity variance r2 ¼ 2e=3 ¼ ðr2
u þ r2

v þ rurvÞ=3, where e is defined for the
canopy layer using [1]. L = (3r2/2)3/2/e is a characteristic length scale of the most energetic eddies. From Eq.
(B.1), when rr = L all the energy contributes to the plume expansion, and when rr > L the constraint rur = r is
imposed.

rr is parametrized as
r2
r ¼

d2
r

1þ ðd2
r � r2

0Þ=ðr2
0 þ 2r2T LtÞ

; ðB:2Þ
where the relative expansion is discretized as
d2
r ðt þ DtÞ ¼ d2

r ðtÞ þ 3Creðt0 þ tÞ2Dt; ðB:3Þ

with the condition d2

r ð0Þ ¼ r2
0, where r2

0 is the size of the scalar source, Cr the Richardson–Obukhov constant
and TL = 2r2/C0e the Lagrangian integral time scale. The upper boundary for sm is fixed to its default value
2e/(C/e), where C/ is an empirical constant. The constants value that give a satisfactory agreement with the
experimental data of [19] are: C0 = 2, l = 0.8, Cr = 0.1, C/ = 2. We note that better parameterization for sr

and therefore sm could be obtained following the approach proposed by [12].
All these quantities are calculated at the particle location, obtaining a position dependent sm.
Inside the code, sm is calculated during a pre-processing step, using a small ensemble of particles (1 · 105)

released instantaneously at the source location. From this first step a cell-centered mean sm is calculated and
then used during the remaining of the simulation. In regions of the domain not reached by the pre-processing
particles sm is assumed to be 2e/(C/e).

Appendix C. Velocity conditioning and coordinate transformation

In concentration field estimation the IECM needs the conditioning on physical and velocity space. This
implies that particles interact with those located in the same physical-velocity-cell. This means that in 2D com-
putation we need to estimate the mean concentration field in a 4D space (x,y,u,v)-space. The more this space
is discretized the more the estimation is precise (given an appropriate number of particles per 4D cell). The
velocity space is divided in equally probable cells; that is, given a standard deviation (ru,rv) for the velocity
fluctuations (u,v), the cell dimension is defined under the normalized velocity PDF so that the cells contain the
same probability to occur.

In many cases the velocity components are correlated; therefore, to simplify the creation of the cells in
velocity space it is better to define a new coordinate system for the velocity PDF.

In this context we define the following correlation angle, c,
tan 2c ¼ 2huvi
r2

u � r2
v

; ðC:1Þ
which defines principal axes of the velocity space,
n ¼ u cos cþ g sin c; ðC:2Þ
g ¼ �u sin cþ v cos c: ðC:3Þ
and consequently
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r2
n ¼ r2

u cos2 cþ r2
v sin2 cþ 2huvi sin c cos c; ðC:4Þ

r2
g ¼ r2

u sin2 cþ r2
v cos2 c� 2huvi sin c cos c; ðC:5Þ
which represents the standard deviations for the transformed velocity space, (n,g), PDF.
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